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We discuss briefly the basic (integrable) representation of the ucr, comprising
the operators A, its adjoint A+, and N (which is equal to N +), satisfying AN 2
NA 5 A. There are no additional relations between the operators, in general. The
ucr include the ccr, car, deformed bosons and fermions, and many other systems
as special cases. The principal structure theorem asserts that every integrable
representation of the ucr is determined by a sequence generalizing the [n]-sequence
of deformation theory.

1. INTRODUCTION

A great many ª quantumº systems are now in fashionÐ strings, quantum

groups, deformed oscillators, and so onÐ so that commutation relations other

than those for bosons or fermions are now of considerable interest. But it

must be noted that in the ª deformedº industry in particular, the ª independent
rediscoveryº rate in publications is significant, as is the reappearance of

known results in ª unitary disguise.º

With this in mind, we present a way of classifying many of the deformed

systems which provides a sure means of distinguishing one from another,

and has the additional merits of being easy to understand and easy to applyÐ

although not easy to prove!
The key to the proposal is is to loosenÐ but not break completelyÐ the

connection between the number operator and the raising and lowering opera-

tors. We no longer require that N 5 A +A, but retain AN 2 NA 5 A. We call

this latter relation (and its adjoint) the ultra commutation relations, or ucr.

Analysis of the representations of these relations involves the usual

technical complications involving families of unbounded operators. So to
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find and classify the basic representations requires a certain mathematical

care. Proofs, details, and further discussion will be found in a forthcoming

article (Dubin et al., 1997).

2. THE UCR ALGEBRA AND REPRESENTATIONS

We start from the underlying abstract algebra leading to the ucr:

Definition. The ucr polynomial algebra for one degree of freedom is the
unital complex *-algebra, denoted !, of all polynomials in two indeterminates

a and n with n 5 n + and subject to the relation a n 2 n a 5 a , which we

call the ultra-commutation relation (abbreviated to ucr).

Proposition. The algebra elements s 5 a + a and t 5 a a + commute with n .

By $ we always mean a dense subspace of a Hilbert space *, and by

L 1 we mean the set of all operators B: $ ® $ for which B*: $ ® $. A *-
subalgebra @ of L + determines a (graph) topology generated by the seminorms

| f |b 5 |bf |, f P $, b P @. By a *-representation ( p , $) of ! we mean an

algebra homomorphism p : ! ® L +($), where, if we write p (x)+ to mean

p (x)* restricted to $, then p (x +) 5 p (x)+. When it is clear which representa-

tion is being considered we use the notation A 5 p ( a ), A + 5 p ( a +), and

S 5 p ( s ) 5 A 1 A, T 5 p ( t ) 5 AA 1 , N 5 p ( n ).

As *-representations preserve relations among generators, the ucr hold on $
in the sense that

ANf 2 NAf 5 Af, A 1 Nf 2 NA 1 f 5 2 A 1 f, f P $.

The *-symmetry of s , t , and n is preserved, so

S 5 S 1 T 5 T 1 , N 5 N 1 ,

but it does not follow that S, T, N are essentially self-adjoint; nor if they

are, do they necessarily commute strongly, i.e., their spectral projections

mutually commute.
We want to consider N as a generalized number operator, so we shall

consider only those representations in which S, T, and N are essentially self-

adjoint and commute strongly, and N has a spectrum consisting of isolated

eigenvalues of finite multiplicity. A further pathology is excluded by

demanding that the domain $ be stable under S, T, and N. These requirements

are not vacuous, as we can construct representations of the ucr in which they
do not hold.

The spectrum of N will not be a subset of the positive integers in general.

We have shown that from every representation of the above sort we can

extract a family of subrepresentations { p m , $ m : m P [0, 1)} such that the
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spectrum of N 2 m I m is a subset of N ø {0}, all but a countable subfamily

of these representations (at most) are trivial, and ( p , $) is a direct sum of

the ( p m , $ m ). Hence by considering ucr representations ($ m , A 1
m , S m , T m , N m

2 m I ), we are assured that the number operator is of the desired type. We

call this a shift-reduction procedure.

There remains one last type of restriction to consider for the representa-

tions. The number operator defines eigenspaces through its spectral decompo-

sition, but their dimensions are unrelated to one another. It is best, therefore,

to begin the analysis by restricting them to be one dimensional, and come
to the general case by direct sums. We call these representations integrable.

An r-dimensional integrable representation, then, is a *-representation

of ! on an r-dimensional Hilbert space *, with N 5 ( r 2 1
n 5 0 nPn and I 5

( r2 1
n 5 0 Pn, where dim Pn 5 1 for all 0 # n # r 2 1. For each n $ 0, choose

a unit vector V n in the image of Pn , so the set { V n: 0 # n # r 2 1} is an

orthonormal basis for *. Using this basis, there is an obvious isomorphism

between * and #r under which p (!) is isomorphic to a *-subalgebra of

Mr(#). It turns out that the general form of the matrices representing p (!)
in this way can be written down quite explicitly.

When * is infinite dimensional, there is still a choice of common domain

$ to be made. We choose the largest reasonable one, in the following sense.

First choose eigenvectors V n of N as for r dimensions, and now we have a

countably infinite basis for *. Start with the smallest domain, the linear span

of these eigenvectors $0, and consider representations p 0 on this space. (Any
larger representation of this type can be restricted to $0.) The representations

we want are the adjoints of these minimal representations. This is a technical

requirement of some delicacy, and we have shown (Dubin et al., n.d.) that

the result is a *-representation of the best sort (countably dominated and

strongly self-adjoint, in the language of op-* algebras).
We consider only integrable representations from now on.

3. STRUCTURE THEOREMS

Because we have such a simple spectral structure for the number operator,

we can combine it with the ucr to determine the action of the operators A
and A +. Our technical conditions in the infinite-dimensional case assure us

that the calculations are mathematically well defined.
The result is that for any integrable representation, there exists a sequence

( m n)n $ 0 of complex numbers such that A + V n 5 m n+1 V n+1, n $ 0, and A V n

5 m n V n 2 1, n $ 1, with A V 0 5 0, which we call the ladder operations. We

refer to A as a lowering operator and A + as a raising operator.



588 Dubin, Hennings, and Solomon

It then follows that S 5 ( `
n 5 1 | m n | 2 Pn , T 5 ( `

n 5 0 | m n+1 | 2Pn. A consistent

convention we adopt is to suppose in all cases that m 0 5 0. Otherwise, there

is no requirement that the constants m n be nonzero.
Recall that we came to the spectrum of N by shifting by a constant.

Shifting N back by m , we still have A V 0 5 0, but now (N 1 m I ) V 0 5 m V 0

does not vanish.

Regarding the analytic structure of any integrable representation ( p , D),

we have already noted that it is self-adjoint, so p ( a +)* 5 p ( a ), p ( a )* 5
p ( a +). The graph topology on $ determined by p (!) is FreÂchet.

We can characterize $ explicitly, if messily, as follows: the vector

( `
n 5 0 cn V n belongs to $ if and only if (cn) belongs to the sequence space

J 5 {x P l 2: uy1, y2, . . . , ym(x) , ` y1, y2, . . . , ym P #}

where

# 5 {x n r: x is a monomial in a , a 1 ; r 5 0, 1, 2, . . .},

uy1, y2, . . . , ym(x)2 5 o
`

n 5 0

([1 1 Kn( y1) 1 Kn( y2) 1 ? ? ? 1 Kn( ym)]2) | xn | 2)

and

Kn( y) 5 | p ( y) V n|
2

are seminorms. With this topology on J , it is isomorphic to $ as a locally

convex space. (This is all trivial for finite-dimensional representations.)
In what follows, it will prove useful and illuminating to to introduce

the notation [n] 5 | m n | 2, n $ 0, for an integrable representation, where the

symbol [n] is to be read as ª box-n.º This extends to notation used in the q-

calculus, originally due to Jackson.

The critical structure theorem identifies the unitary equivalence classes

of integrable representations in a simple fashion:

The Unitary Equivalence Theorem. Two integrable (resp. minimal) repre-

sentations are unitarily equivalent if and only if their [n] sequences coincide.

We have not mentioned irreducibility yet, and it must not be thought

that integrable representations are necessarily irreducible. For integrable rep-

resentations the many possible complications which can occur in op-*algebras

are not present: the principal bounded commutants all coincide, and so we

may write, simply, p (!)8 for the resulting W*-algebra. Hence ( p , D) is
irreducible (in any sense) if and only if the only reducing subspaces of $
are {0} and $ itself; or, there is no nontrivial decomposition of p as a direct

sum of integrable particle *-representations of the ucr; or p (!)8 consists

of scalars.
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But this does not tell us how to recognize when a ucr representation is

irreducible. For that, we have shown the following: an integrable representa-

tion is irreducible if and only if [n] Þ 0 for all n P N.
We may now state the most important practicable results of the mathe-

matical theory: given an integrable representation of the ucr, in however

unusual a form, simply by calculating the normalization constants [n] we

can immediately learn what type of system is being described and read off

the irreducible subrepresentations.

4. EXAMPLES OF INTEGRABLE REPRESENTATIONS

4.1. The CCR

There is only one integrable representation of the ccr, namely the SchroÈ d-

inger representation. It is irreducible and the common domain is 6(R), the

eigenfunctions V n being the Hermite±Gaussian functions. As m n 5 n1/2, the

box sequence is [n] 5 n for all n $ 0.

4.2. Bounded Operators

Suppose the sequence ( m n)n $ 0 is bounded: supn $ 0[n] 5 b , ` . Then N
is not bounded, but the other operators are:

|A| # b 1/2, |A 1 | # b 1/2, |S | # b , |T | # b

We can choose the vectors V n to be the Hermite±Gaussian functions, so that

$ 5 6(R), but A and A + are no longer those found in the ccr.

As an illustration, suppose m n 5 1 for all n $ 1. Then AA+ 2 A +A 5
P0, the projection onto V 0. A realization of this is on Hardy space H 2 over

the unit circle, with V n(e
i u ) 5 e in u , raising and lowering operators

(A 1 g)(e i u ) 5 e i u g(e i u ), (Ag)(e i u ) 5 P 1 e 2 i u g(e i u )

and S 5 P + 2 P0, T 5 P +. Here P + is the SzegoÈ projection.

4.3. Deformed Maths Bosons and Fermions

These are integrable representations satisfying the commutation relation

AA 1 2 qA 1 A 5 I, | q | , 1

in addition to the ucr. Depending on the value of q, different sorts of systems

are described in this way. Negative q describes q-deformed maths fermions,

and positive q describes q-deformed maths bosons. The term `maths’ distin-

guishes these systems from their q-deformed `physics’ relatives described

below.
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The box sequences for these systems involves the geometric series

polynomial functions

pn(x) 5 1 1 x 1 x2 1 ? ? ? 1 x n 2 1 5
1 2 x n

1 2 x
, x P # \ {1}

For given q the [n] sequence is [0] 5 0 and

[n] 5 pn(q) 5
1 2 q n

1 2 q
, n $ 1

Clearly, these representations are irreducible. They are bounded, with

b 5 H 1, 2 1 , q , 0 (maths fermions)

(1 2 q) 2 1 0 # q , 1 (maths bosons)

Hence we can choose the vectors V n to be the Hermite±Gaussian functions

and $ 5 6(R). The case q 5 0 is the example [n] 5 1 discussed above.

The case q 5 2 1 yields [2] 5 0, which is the car, which we discuss below.
The case q 5 1 yields [n] 5 n for all n P 1, which is the ccr. Thus, this

family interpolates between the ccr and car through bounded representations.

A variant type of system is obtained by using the commutation relation

AA 1 2 qA 1 A 5 cI, c . 0

This yields [n] 5 cpn(q) for all n $ 1 and | q | , 1. These are quantum
hyperboloids, with noncommuting coordinates A, A +.

The twisted ccr for one degree of freedom is a q-maths system. Their

irreducible unitary representations have been found by Pusz and Woronowicz

for q . 0 and by SchmuÈ dgen for | q | 5 1. (They analyzed such systems with

more than one degree of freedom as well, a rather more difficult problem.)

4.4. Deformed Physics Bosons and Fermions

These are integrable representations satisfying the commutation relations
AA+ 2 qA+A 5 q 2 N, | q | , 1, in addition to the ucr. Negative q are q-

deformed physics fermions, and positive q are q-deformed physics bosons.

For given q, the [n] sequence is [0] 5 0 and

[n] 5
1

q n 2 1 pn(q
2) 5

q n 2 q 2 n

q 2 q 2 1 , n $ 1

From this we see that, in fact, there are no q-deformed physics fermions,

although q-deformed physics bosons exist. For such systems, $ is infinite

dimensional, the representation is irreducible, with A and A + unbounded,

since [n] ® ` as n ® ` for any 0 , q , 1.
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5. CONCLUSION

We may give explicit realizations as matrices in the case of finite r-
dimensional representations. For example, when r 5 2 we recover only the
representation of the car discovered by Jordan and Wigner in 1928.

This completes our discussion here. In Dubin et al. (n.d.) the reader

will find a discussion of spatial and kernel realizations of integrable represen-

tations by differential operators as well as proofs and details of the analysis.
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